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Difference of convex optimization for data visualization

1 State of the art

In the Big Data era, Data Visualization is an area of interest to specialists from a wide variety of
disciplines, [10, 11, 17, 18]. The information managed must be processed and, what is even more
important, understood. Data Visualization techniques arise to respond to this requirement by
developing specific frameworks to depict complex data structures as easy-to-interpret graphics,
[24, 29].

Mathematical Optimization has contributed significantly to the development of this area
during recent years, see [9, 20, 25] and the references therein. Nowadays, complex datasets pose
new challenges in order to visualize the data in such a way that patterns are captured and useful
information is extracted. Special attention is paid to represent the underlying dissimilarity rela-
tionships that data may have. Classical dimensionality reduction techniques, such as Principal
Component Analysis, [26], or Multidimensional Scaling (MDS), [3], have been customized to
deal with more complex data structures, [1, 12], and to make the interpretability of the results
easier via, for instance, sparse models, [6, 5, 13].

Apart from adapting existing methods, specific problems may call also for new approaches.
For instance, in addition to the dissimilarity measure, the data may have attached a statistical
variable, to be related with the size of each object in the graphical representation of the dataset,
[15]. This is the case for geographical data, to be visualized on a map in which countries are re-
sized according to, for instance, population rates, but maintaining the neighboring relationships
of countries. This type of representations, known as cartograms, [30], leads to plots in which
countries are replaced by geometrical objects, frequently circles or rectangles, while the neigh-
borhood relationships and the size of the objects are sought to be well represented. A key issue
is how such problems are expressed as optimization programs, and which optimization tools are
available to cope with them. For uses of optimization applied to cartograms construction and
related visualization frameworks we refer the reader to [4, 7, 15, 16, 19, 21, 27, 28] and references
therein.

2 Summary

In this paper we present a new mathematical programming framework to build a visualization
map, in which a set of N individuals are depicted as convex objects in a bounded region Ω ⊂ Rn,
usually n ≤ 3. These objects must have a volume proportional to a given statistical value
associated with the individuals, ω = (ω1, . . . , ωN ), and they should be placed accordingly to
a dissimilarity measure attached to the individuals, δ = (δij)i,j=1,...,N . In order to locate the
objects in Ω, a reference object B is used, to be translated and expanded. However, since our
final goal is to obtain a visualization map which allows the analysts to understand the data they
are working with, a criterion which somehow controls the appearance of the plot needs to be
also considered. We will deal with this paradigm by focusing on how the objects are spread out
over Ω.
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Leaving aside the statistical values ω, the purpose of representing dissimilarities between
individuals reminds to MDS, which aims to represent the dissimilarity between individuals as
empirical distances between points in an unbounded space of lower dimension. Although our
visualization model may seem very close to MDS, it has the special feature of representing in the
bounded region Ω not only dissimilarities as distances between objects, but also the statistical
measure ω through the volumes of the objects in Ω. Our visualization tool is able to rescale
the dissimilarities between the individuals and the statistical values associated to them to fit
in Ω. Observe that fitting the objects into Ω may yield representations in which the objects
intersect if their sizes are not small enough, but, on the other hand, too small objects obstruct
the visualization of the statistical measure. Ideally the objects should be spread out across the
visualization map. This aim will be also taken into account when modeling the problem.

In this paper, the construction of a visualization map with the three characteristics mentioned
above is written as a global biobjective optimization problem with convex constraints. We show
that the objective function of the aggregated problem can be expressed as a difference of convex
(DC) function, and thus DC optimization tools can be used to solve the optimization program,
[22]. Moreover, a generalization of the previous problem is presented, in which a visualization
map with multiple reference objects, B1, . . . ,BS , is built. This approach yields to a mixed integer
nonlinear program for which an alternating algorithm is proposed. We show that, assuming
that the choice about which object represents each individual has been made, the optimization
problem is reduced to the single reference object case, and thus DC tools are appropriated to
solve it. On the other hand, supposing that the visualization map is built, namely the locations
of the objects representing the individuals are known, the problem of deciding which reference
object best represents each individual turns into a nonconvex binary quadratic program.

3 Contribution to the literature

The main contribution of this work is the development of a general mathematical framework
to visualize individuals related through a dissimilarity measure, which have also attached a sta-
tistical variable. Whereas the existing techniques in the literature are usually problem-specific,
since they exploit the nature of the data, and specifically designed to depict two-dimensional
plots, our proposal is able to handle data of any kind. Different criteria have been proposed and
formally stated to obtain visual appealing maps, such that the concept of penetration depth or
the using of different shapes to represent the objects. Including a bounded region Ω in which
the visualization map has to be built allows the user to control the plot appearance, for instance
not to have distortions when showing it on a computer screen.

From the algorithmic point of view, the powerful DCA has been applied to handle the model.
The fact of being able to obtain a specific class of DC decomposition for the objective function
makes the running times be dramatically reduced. Such decomposition allows us to obtain an
explicit expression of the optimal solution of the convex problems to be solved in each iteration
of DCA, and thus, we do not need to use any optimization routine to solve them.

In addition, the methodology proposed in this paper has applications in fields others than
Data Visualization, such as for instance, Location Analysis, [14, 2, 8], or Distance Geometry,
[23].
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