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Abstract

This study proposes naive and wild bootstrap procedures to construct pointwise con�-

dence intervals for two functional regression models: the functional nonparametric regres-

sion model, considering scalar response and functional predictor, and the semi-functional

partial linear regression model, in which we add linear e�ect of scalar covariates. By means

of these two bootstrap procedures we can approximate the asymptotic distribution of the

estimators in both regression models. The validity of these two methods has been proved

theoretically in the setting of dependent data, assuming α-mixing conditions on the sam-

ple, and they were used to construct pointwise con�dence intervals for each component of

the functional regression models. A simulation study was carried out to show the perfor-

mance of the proposed procedures in the functional nonparametric model, in addition to

an application to electricity demand and price from the Spanish Electricity Market which

illustrates its usefulness in practice for both regression models.

1 Introduction

The aim of our paper is to investigate the question of practical use of functional time series

predictions by providing a bootstrapping procedure for overcoming the di�culty related to the

estimation of the constants in the limit distribution. We are focus on two functional regression

models: Functional Nonparametric (FNP) and Semi-Functional Partial Linear (SFPL).

We consider �rst the FNP model:

Yi = m(χi) + εi, (1)
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where the process {(χi, Yi)} is α-mixing and identically distributed as (χ, Y ). The response,

Y , is scalar while the covariate, χ, is valued in some in�nite-dimensional space H, which is

endowed with a semi-metric d(·, ·). Finally, m(·) is an unknown smooth real-valued operator

and the corresponding random errors {εi} are i.i.d. as ε, and we assume that E(ε|χ) = 0

and E(ε2|χ) = σ2
ε(χ) < ∞. Given a �xed element χ of the space H, the �rst part of this

study focuses on inference on m(χ) in model (1); speci�cally, the aim is to construct con�dence

intervals for m(χ). We consider the the functional kernel estimator m̂h(·) of the regression

function m(·) = E(Y | χ = ·) as Ferraty et al. (2010) and Delsol (2009).

The bootstrap algorithms are based on resampling the residuals of the model and build

a bootstrap version for the regression function estimator. Two di�erent procedures are pro-

posed, one using naive bootstrap for homoscedastic models and also wild bootstrap when it

is heteroscedastic. We must take into account the use of two bandwidths when dealing with

bootstrap concerning regression.

When dealing with Semi-Functional Partial Linear Regression model (SFPL model), we will

consider the next model:

Yi =X
T
i β +m(χi) + εi, i = 1, . . . , n, (2)

where the sequence {(X i,χi, Yi)} is α-mixing. Using the notation referred in the extended

version of this study, we consider the estimators β̂h and m̂h(·) of the vector parameter β and

the function m(·) in (2) as β̂h = (X̃T
h X̃h)

−1X̃T
h Ỹh and m̂h(χ) =

∑n
i=1wh(χi, χ)(Yi −X

T
i β̂h),

respectively, as in Aneiros and Vieu (2008).

We develop also two bootstrap procedures, for homoscedastic (naive bootstrap) and het-

eroscedastic models (wild bootstrap). In both cases we follow the same idea as in the FNP

model, resampling the residuals of the SFPL model (2) and building the correspondent boot-

strap version of the estimators for each component of the SFPL model.

2 Contributions

The present study establishes and proves theoretically the validity of the proposed bootstrap

procedures and apply them to build con�dence intervals. Main reference when dealing with

the validity of the bootstrap in the FNP model concerns the asymptotic distribution of m̂h(χ).

We use the result by Delsol (2009), which gives this asymptotic distribution under α-mixing

conditions (see its Theorem 2.7). Then, we consider the same assumptions related to its The-

orem 2.7, together with Ferraty et al. (2010) to attain the validity of the bootstrap in the

independent case. Using the remaining considerations and notation indicated in the extended

version of this study, we present our �rst theorem.
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Theorem 1 Under assumptions indicated above, for the wild bootstrap procedure, we have that

sup
y∈R

∣∣∣∣P S (√nFχ(h)(m̂
∗
hb(χ)− m̂b(χ)) ≤ y

)
− P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)∣∣∣∣→ 0 a.s.

In addition, if the model is homoscedastic (i.e. σ2
ε(·) = σ2

ε), then the same result holds for the

naive bootstrap.

In the case of SFPL mode, we use assumptions established in Theorem 1 in Aneiros and

Vieu (2008), to prove the asymptotic normality of β̂ also under dependence. We may consider

two di�erent theorems, one for each part of the SFPL model.

Theorem 2 Under assumptions mentioned above, if the model is homoscedastic, for the naive

bootstrap and in other case if, in addition |εi| <∞, i = 1, . . . , n, F (h)−1n−1/4+1/rlogn(loglogn)1/4 →
0, E|ηηT | <∞ and E|η|3 <∞, for the wild bootstrap procedure we have that

sup
y∈R

∣∣∣P S (√naT (β̂∗b − β̂b) ≤ y
)
− P

(√
naT (β̂b − β) ≤ y

)∣∣∣→P 0

Theorem 3 Under Assumptions mentioned above if, in addition ||X i||∞ ≤ C < ∞, if the

model is homoscedastic, for the naive bootstrap procedure, and in any case for the wild bootstrap

procedure we have:

sup
y∈R

∣∣∣P S (√nF (h)(m̂∗hb(χ)− m̂b(χ)) ≤ y
)
− P

(√
nF (h)(m̂h(χ)−m(χ)) ≤ y

)∣∣∣→P 0

Those theorems had been proved theoretically and they were applied to build bootstrap

con�dence intervals within the two functional regression models. Simulations shown the accu-

racy of the proposed procedures for FNP model, meanwhile its usefulness is shown in practice

through an application to electricity demand ad price in the Spanish Electricity Market using

in this case both functional regression models.

3 State of the art

Considering the FNP model in the setting of independent data, Ferraty et al. (2007) obtained

the asymptotic normality of a properly standardized estimator, m̂h(χ); then, by estimating the

constants involved in the standardized estimator one can construct the corresponding con�-

dence intervals. The main drawback of this procedure is that such constants could be di�cult

to estimate (for some simple examples, see Proposition 1 in Ferraty et al., 2007). This drawback

was overcome in Ferraty et al. (2010) by means of bootstrapping techniques, by approximat-

ing directly the distribution of the estimation error without having to estimate the constants

involved in the standardized estimator. On the other hand, some studies exist in the case of
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dependent data {(χi, Yi)}. For instance, Masry (2005) and Delsol (2009) obtained the asymp-

totic normality of a properly standardized estimator, m̂h(χ), under α-mixing conditions. The

main advantage of the results in Delsol (2009) against the ones in Masry (2005) is the fact that

Delsol obtained explicit constants, which is not the case of Masry (2005). As in the setting of

independent data recently referred, there exist situations where the constants given in Delsol

(2009) are di�cult to estimate, and this drawback could be overcome, again, through imple-

mentation of bootstrap techniques. Thus, the present study represents the extension, to the

case of dependent data, of Ferraty et al. (2010), and can be found more in detail in Raña et al

(to appear).

Nevertheless, considering now the SFPL model, as fas as we know, there is no preceding

study in the literature regarding validity of the bootstrap in this model (even for the independent

case). Moreover, it is even di�cult to �nd applications of this kind of bootstrap procedures

applied to classical partial linear regression. One can �nd in Liang et al. (2000) and You

and Chen (2006) proposals for bootstrap approximation in partial linear regression but in the

case of �xed design, independent data and regarding the linear component of the model. For

all these reasons, this study is the �rst approach to the validity of the bootstrap procedures

developed in the context of SFPL model with dependent data (and, as a particular case, to

independent data), considering both linear and nonparametric parts of the model.
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