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1 Context

This work belongs to the field of Markov processes and more specifically, to the context of
branching processes. These processes are one of the most remarkable probability models
for the description of the dynamic of populations and since the appearance of the basic
model, they have been extensively developed from simple to complex models which allow
to represent many practical situations in a variety of fields such as biology, epidemiology,
genetics, medicine, nuclear physics, demography, actuarial mathematics, and algorithm and
data structures.

2 State of Art

Within the class of the branching processes, an appealing generalization of the classical model
is the controlled branching process (CBP), on which this work is focussed. The distinctive
characteristic of the aforementioned model is that the number of individuals with reproduc-
tive capacity in each generation is determined by a random control function. The dynamic
of this process can be described as follows: each individual reproduces independently of the
others according to the same probability law, called offspring distribution, and when the
number of individuals in each generation is known, a random control mechanism determines
the number of progenitors that participate in the subsequent reproduction phase.

The flexibility of this model let include many well-known branching processes as par-
ticular cases in this class, for example, the Bienaymè–Galton–Watson process itself, the
branching process with immigration, with random migration, with immigration at state zero
or with bounded emigration, the branching process with adaptive control or with continuous
state space.

Most recent research on this field has been focussed on the inferential theory motivated
by the strong relation between the value of the parameters of this process and its behaviour.
In this sense, in a frequentist framework, relevant papers are [2], [11], [5], [6], [12], [7] and
[8]. From a Bayesian standpoint, [10], [3] and [4] deserve to be mentioned.
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In the context of branching processes, the study of robust estimators has been scarcely
dealt with and all the results correspond to the frequentist framework. For the Bienaymé–
Galton–Watson process, this issue is addressed by using weighted least trimmed estimation
in [14] or by applying minimum Hellinger distance estimation in [13]. The results of last
paper have been extended to the controlled branching process by applying minimum disparity
estimation methodology in [8]. As a result, this work presents pioneer results for the problem
of developing a robust procedure against outliers for the main parameters of the model from
a Bayesian outlook.

In a general Bayesian context, different approaches have been proposed to tackle the
problem of obtaining robust estimators when the data are suspected of being contaminated
with large outliers (see [1]). A standard strategy is to postulate a heavy tailed distribution
for the data, however, it entails a loss of precision in a free-contamination context. The same
side effect is produced when assuming a mixture model for the data, where one of the mixture
components is the contamination; this practice also presents an additional difficulty since the
knowledge of the number of mixtures and of the type of distributions involved are required.
Another procedure is to use prior distributions which penalize large values of the parameter.
As an alternative solution to the problem, a methodology based on disparity theory has
been proposed in [9] for samples made up by independent and identically distributed random
variables.

3 Main contributions

This work presents an extension of the results given in [9] to the context of branching
processes. Assuming a parametric framework for the offspring distribution and considering
the entire family tree as sample, the main goal is to estimate the main parameter of the
offspring distribution, which is called offspring parameter.

Firstly, for an arbitrary disparity measure D, we define a D-posterior distribution for
the offspring parameter. This is motivated by the fact that the Kullback-Leibler divergence
between the nonparametric maximum likelihood estimator of the offspring distribution and
the parametric family to which we assume the offspring distribution belongs appears in the
expression of the log-likelihood function. This suggests replacing the Kullback-Leibler di-
vergence in the Bayes rule with a disparity measure D that it is known to provide robust
estimators in a frequentist framework. The resulting function is the so-called D-posterior
density function and its expectation is proposed as a point estimator of the offspring pa-
rameter, which is called expectation a D-posteriori (EDAP) estimator. In relation to its
properties, we establish conditions for:

• Its existence.

• Its strong consistency.
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• Its limiting behaviour compared to the minimum disparity estimator of the offspring
parameter (see [8] for its definition).

• The approximation of its limiting probability distribution by a normal distribution
having been suitably normalized.

Besides the asymptotic features of the EDAP estimator, we also establish an approxima-
tion of the D-posterior density function by the density function of certain normal distribu-
tion.

For the analysis of the robustness properties of the proposed estimator, we introduce the
EDAP functions and provide results concerning:

• Their existence.

• Their limiting behaviour compared to the disparity functional of the offspring param-
eter (see [8] for further details).

Regarding the robustness qualities, we analyse classical measures and a new notion intro-
duced in [9], which we adapt to our context, the asymptotic breakdown point. In particular,
we establish results for:

• The limiting behaviour of the α-influence curves.

• The boundedness of the influence curve.

• The breakdown point.

• The asymptotic breakdown point.

Finally, despite we provide the results for a large class of disparity measures, we focus
our attention on the Hellinger distance and the negative exponential disparity to illustrate
the accuracy of the proposed estimators by way of a simulated example using the statistical
software and programming environment R.

Although we do not show the results in the present work given its extension, it is worth-
while to mention that, apart from the EDAP estimator, we have studied an estimator of the
offspring parameter defined as the mode of the D-posterior density, obtaining similar results
to those for the EDAP estimator.
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